US009418450B2

a2 United States Patent (0) Patent No.. US 9,418,450 B2
Tourcha et al. 45) Date of Patent: Aug. 16, 2016
(54) TEXTURE COMPRESSION TECHNIQUES 5,420,639 A * 5/1995 Perkins ..o, 375/240.12
5,455,680 A * 10/1995 Shinccccoevvvveiieinen 382/239
. : 5,535,290 A * 7/1996 Allen 382/250
(75) Inventors: Konstantine Iourcha, Sar.l Jose, C.A 5692012 A * 11/1997 Virtame etal. " 375/940
(US); Andrew S. C. Pomianowski, Palo 5,768,434 A * 6/1998 Ran 382/240
Alto, CA (US) 5946417 A * 81999 Bonneau etal. 382/236
5,956,431 A 9/1999 Iourcha et al.
(73) Assignee: ATI Technologies ULC, Markham, ON 6,031,939 A * 2/2000 Gilbertetal. 382/239
(CA) 6,545,705 B1* 4/2003 Sigeletal.cccceeuene. 348/157
6,658,146 B1 12/2003 Iourcha et al.
(*) Notice: Subject to any disclaimer, the term of this g’g?g’?&? gé égggj ggf:gh;ztlél'
patent is extended or adjusted under 35 nr inued
U.S.C. 154(b) by 2132 days. (Continued)
(1) Appl. No.: 11/513,190 FOREIGN PATENT DOCUMENTS
. CN 1672177 A 9/2005
(22) Filed: Aug. 31,2006 GB 2274754 8/1994
WO WO 99/18537 4/1999
(65) Prior Publication Data
US 2008/0055331 A1 Mar. 6, 2008 OTHER PUBLICATIONS
(51) Int.CL Kirenko, Thor, “Reduction of Coding Artifacts Using Chrominance
GO6T 9/00 (2006.01) and Luminance Spatial Analysis” IEEE, 2006, : 209-210.*
HO4N 19/176 (2014.01) (Continued)
HO4N 19/119 (2014.01)
HO4N 19/46 (2014.01)
HO4N 19/60 (2014.01) Primary Examiner — Barry Drennan
HO4N 19/96 (2014.01) Assistant Examiner — Robert Craddock
HO4N 19/154 (2014.01) . .
HO4N 19/54 (2014.01) (74) Attorney, Agent, or Firm — Volpe and Koenig, P.C.
(52) US.CL
CPC ..o GO6T 9/00 (2013.01); HO4N 19/119 (57) ABSTRACT
(2014.11); HO4N 19/154 (2014.11); HO4N
19/176 (2014.11); HO4N 19/46 (2014.11); A texture compression method is described. The method
HO4N 19/54 (2014.11); HO4N 19/60 (2014.11); comprises splitting an original texture having a plurality of
HO4N 19/96 (2014.11) pixels into original blocks of pixels. Then, for each of the
(58) Field of Classification Search original blocks of pixels, a partition is identified that has one
USPC e 345/582, 587, 382/23.2’ 239, 251 or more disjoint subsets of pixels whose union is the original
See application file for complete search history. block of pixels. The original block of pixels is further subdi-
(56) References Cited vided into one or more subsets according to the identified

U.S. PATENT DOCUMENTS

5,051,840 A *
5,384,643 A *

9/1991 Watanabe et al. 382/239
1/1995 Ingaetal.ccooonennee 358/403

partition. Finally, each subset is independently compressed to
form a compressed texture block.

15 Claims, 13 Drawing Sheets

Decompress the compressed texture block| 340
to obtain an approxima!inn of the original

block of pixels

Compare the original black of pixels to the

lapproximation of the original black of pixets|

1o obtain a guality parameter for the
identified partiticn

| 342

Choose a final parition for the original
block of pixels that yields an optional
quality parameter

o

Subdivide the original block of pixels into 348
oneor more final subsets according to the
final partition

Independently compress each final subsst
to form a compressed texture block

-349

US 9,418,450 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

6,819,793 Bl 11/2004 Reshetov et al.
6,975,773 B1 12/2005 Govindaswamy et al.
7,039,244 B2 5/2006 Hong et al.

7,388,993 B2 *
2003/0053706 Al
2004/0081357 Al

6/2008 Govindaswamy et al. ... 382/240
3/2003 Hong et al.
4/2004 Oldcorn et al.

2004/0126031 Al* 7/2004 Dwyeretal. 382/251

2004/0228527 Al 11/2004 Iourcha et al.

2004/0252894 Al* 12/2004 Miyanohara 382/232

2004/0258322 Al 12/2004 Hong et al.

2006/0074935 Al* 4/2006 Zimmerer 707/100
OTHER PUBLICATIONS

Kauff et al. , “Functional Coding of Video Using a Shape-Adaptive
DCT Algorithm and an Object-Based Motion Prediction Toolbox”
IEEE Transactions on Circuits and Systems for Video Technology,
vol. 7, No. 1, Feb. 1997 : 181-196.*

Masayuki Tanimoto , Hiroshi Ohyama , Tadahiko Kimoto , Sakae
Katsuyama and Toshiaki Fujii; A New Fractal Image Coding Scheme
Employing Blocks of Variable Shapes; Sep. 1996; in Proceedings
ICIP-96 IEEE International Conference on Image Processing; 137-
140.*

Leonid Levkovich, Maslyuk et al., “Texture Compression with Adap-
tive Block Partitions,” pp. 401-403. Proceedings of the 8th ACM
International Conference on Multimedia (2000).

Ying, Tang et al., “Importance-Driven Texture Encoding Based on
Samples”, IEEE, Jun. 22, 2005, pp. 169-176.

Search Report and Written Opinion for International Application No.
PCT/US2007/018965 mailed Apr. 10, 2008, 12 pages.

Notification of the Second Office Action, dated Nov. 14, 2011, for
Chinese Patent Appl. No. 200780030887.7, 9 pages.

Examination Report, dated Oct. 14, 2009, for European Patent Appl.
No. 07811591.2, 4 pages.

Notification of the First Office Action, dated Jun. 28, 2010, for
Chinese Patent Appl. No. 200780030887.7, 7 pages.

* cited by examiner

US 9,418,450 B2

Sheet 1 of 13

Aug. 16, 2016

U.S. Patent

. W S o e e Gk An L R e e e e e A A M S W I W WE ER MR AR ek e e S MR S R e A e A e Mk Em AR M MR M SR M en el - e e e e W e e m e

External
Memory
135

v
c§ £5 28
25 S5 53
!y 52 3 38 g
= T <
g
S
~ T
L&)
4 E
mnu
O
Cm_
=_= <~ < =
w
o) > =
o o o s
\ O o O o £ o
m 3 Q 9

" - v A i A e ey AP e e e e T WP e e e M e e W A W = = e e = m e e e = e e e e e e R e - —— -

e A SR SN e e e e el e - R N AP W P Y M AR R e S e e M W e e W YR A R e e e R

FIG. 1

U.S. Patent

Aug. 16, 2016

CPU

Texture
Source

210

i

Texture Compression

220

Engine

120

Texture Memory
250

Output
Device

(display)
170

Sheet 2 of 13 US 9,418,450 B2

Graphics Memory

150

~_

Texture Decompression
Engine
240 9

FIG. 2

U.S. Patent

Aug. 16, 2016 Sheet 3 of 13

Split an original texture into
original blocks of pixels

/-305

|

for each of the 310
original blocks of pixels

|

Identify a partition having one or
more disjoint subsets of pixels
whose union is the original block
of pixels

15
/3

|

Subdivide the original block of
pixels into one or more subsets
according to the identified
partition

320
/

|

Individually compress each
subset to form a compressed
texture block

325
/

FIG. 3A

US 9,418,450 B2

U.S. Patent

Aug. 16, 2016 Sheet 4 of 13

US 9,418,450 B2

Decompress the compressed texture block
to obtain an approximation of the original
block of pixels

/330

3

Compare the original block of pixels to the
approximation of the original block of pixels
to obtain a quality parameter for the
identified partition

/332

334

quality parameter
for the identified partition
meet a pre-selected
Threshold?

YES

335

there a partition
for which no quality
narameter has been
obtained?

Choose as a final partition the patrtition
yielding the quality parameter closest to
the pre-selected threshold

t//337

Choose the identified partition as a final
partition for the block of pixels

/-336

Y

Subdivide the original block of pixels into
one or more final subsets according to the
final partition

338
T

ol

A

independently compress each final subset
to form a compressed texture block

3
/-39

FIG. 3B

U.S. Patent Aug. 16, 2016 Sheet 5 of 13 US 9,418,450 B2

Decompress the compressed texture block| —340
to obtain an approximation of the original
block of pixels

:

Compare the original biock of pixels to the | 342
approximation of the original block of pixels
to obtain a quality parameter for the
identified partition

344

Has a
quality parameter
been obtained for each
partition in the
predefined set of
partitions?

Choose a final partition for the ariginal /346
block of pixels that yields an optional
quality parameter

,

Subdivide the original block of pixels into | 348
oneor more final subsets according to the
final partition

*

Independently compress each final subset /349
to form a compressed texture block

FIG. 3C

U.S. Patent Aug. 16, 2016 Sheet 6 of 13 US 9,418,450 B2

T
7

404
J

S S r

408
FIG.4

406

402
f
.
I

U.S. Patent Aug. 16, 2016 Sheet 7 of 13 US 9,418,450 B2

, 505
Receive a compressed texture block T
representing an original texture block

Determine a partition for the compressed /510
texture block, the partition defining one or
more disjoint subsets into which data in the
compressed texture block is to be
unpacked

Unpack data for each subset based on the /515
determined partition

iIndependently decompress each subset to /520
form an approximation of the original
texture block

FIG. 5

U.S. Patent

600A

Aug. 16, 2016

Sheet 8 of 13

US 9,418,450 B2

1,
1,
1,

2, 2,
4, 2, 2,

3,

4, 2, 2,
/
4[
4, 4, 4,

4,

2, 0,

2,

3, 3, 3,

3'

3, 3, 3, 3, 2, 2, 0,

3,

3, 3,3,3,2, 2,0,

3,

0,

1, 1,
1, 1,
[’
4,

4, 4,

2, 2,
1,
1'I

’

3, 3, 4,

31

3,
1,
1,
1,
1,
3,

3,
0,
0,
0,
0/
2,
2,

3,
0,
0,
0,
0,
2,
2,

3,
o,
0,
o,
0,
2,
2,

3,
0,
0,
q,
g,
2,
2,

2, 2, 2,3, 3, 4, 4,
4

2,

2, 2, 2, 3, 3, 4, 4,

2,

4, 4, 3, 3, 2, 2, 2,
4, 3, 3, 2, 2, 2,
0, 0,0,0,1, 1,1, 1,

4,

0,1,1,1, 1,

0,

0, 0, 0,0,1, 1,1, 1,
1,

¢,

2[2!
2, 2,]3,

2,

1,

1,
1,

0’ 0I
o,|]1, 1,

0,
0

3,

3,

1, 1,(2,

1,

1’ 1I

1,

1,

4, 4,

4,

2, 2,|3, 3,

1,

4, 4,

4,

2,

2'

1,
2, 1,1,

2,
2,
2,
2,

2,
3, 2,
2,
2,

3'
3l
3,

3,
3,
4, 3,

4,

OI

0,

4, 3, 3, 2,

4,

4, 3, 3, 2, 2, 0, 0,

4,

4, 3, 3,2, 2,0, 0,

4,

0,
4,
3,
3,

r
[
’
’
’

4
3,
3,

2,
4I
3'
3[

2,
4’
3,
3!

3, 3,

2,

2, 4,

2, 3,
2, 2, 3,

4,
2,
2,
2,

4,
0,
01
1,
11

2, 2, 3, 3, 3, 3, 3,

1,

2, 2, 3, 3, 3, 3, 3,

1,

1,
4,

1,
4,
4,

1,
3,
31

1,
3,
3,
3,
3,
3,

0,
3,
3,
3(
3/
3,

OI
2,
2,
2,
3I
3/

0, 0,
2, 2,

.2,
2, 2,
2, 2,
2, 2,

2, 3, 3, 3, 3,

2,

2, 3, 3, 3, 3, 4, 4,

2,

2,
2,

0,0,0,1, 1, 1,
0,0,1,1,1, 2

o,
o,

0, 1,1,1, 2, 2, 3,

0,

1, 1,1, 2, 2, 3, 3,

0,

1,1, 2, 2, 3, 3, 4,

1,

1, 2, 2, 3, 3, 4, 4,

1,

2, 2, 3, 3, 4, 4, 4,

1'

3,3,3,3,1,1, 1,

3,

3, 3,3, 3,0,0,0,

3,

2, 2,2,2,0,0,0,

2,

2,2,2,2,0,0,0,
0,

2]

ol
4,
3/
31

2,2, 2,0,
2, 2, 4, 4,

; 2, 4, 4,
2, 2, ,
2, 2, 3, 3, 3,
2, 2, 3, 3, 3,

2, 2,
0, 0,
o, 0,
0, o0,

.1,
1, 1,

i, 2, 2, 3, 3, 3, 3,
2,

1,

3, 3, 3, 3,

2,

1,

1,

1,
4!
4’
4,

1, 1,
4, 4,
4, 4,
3, 4,

1,
3,
3,
3,

Ol
3:
31
3,

o, 0, O,
2, 2, 2,
2, 2, 2,
2, 2, 3,

2, 3, 3, 3, 3, 4, 4,

2,

3, 3, 3, 3, 4, 4,

2, 2,

4, 3, 3, 3, 3, 2, 2,
4, 3, 3, 3, 3,2, 2,

4,
4,

4, 3, 3, 3, 3, 2, 2,

4,

4, 4, 3, 3, 2, 2, 2,
2, 2,
2,

4,

2,

4, 4, 3, 3,

7

4,

2,

2,

4, 3, 3,

4,

47 3I 3' 2! 21 21
0, 0, 0, 1,

0,

4,

4,
4,

3,
3,
3,

2,
2,
2,

1,
1,
i,

1,
1,
i,

o,
0,
0/

0,
OI
o,

0, 1,1, 2, 3, 4, 4,

o,

0,1, 1, 2, 3, 4, 4,

ol

o, 1,1, 2, 3, 4, 4,
1

o,

4’
3,
3,
2I

4,
3[
3[
2/

31
3,
3,
2,

[2[
4!
3, 3,
31 3!
2, 2,

1,
0,
0,
0,
1,
1,

0,
01
01
11
1,

o,
0,
0,
1,
1,

1,1, 2, 2, 2, 2, 2,
2,

i,

2,

1,1, 2, 2, 2,

1,

1,
1,
4,
4,
4,

1,
1,
4,
4,
4,

1,
1,
4,
4,
4,

1,
1,
1,
3,
3,
3,

1,
1,
1,
3,
3,
3,

0, 0,
2, 2,
2, 2,
2, 2,
2,

0,
2,
2,
2,

3, 3, 3, 4, 4,

3,

2,

2, 3, 3,3, 3,4, 4,
2, 2,

2,
4

’ 4! 3[3! 3’ 3!
4, 4, 3, 3, 3, 3, 2, 2,
4 2,

2,

4, 4, 3, 3, 2,

’

4, 4, 3, 3, 2, 2, 2,
3, 2,

4,

2,

2,

3,

4,

4,

4, 4, 3, 3, 2, 2, 2,

4,

1,

1,

602

FIG. 6A

U.S. Patent

600B

Aug. 16, 2016

Sheet 9 of 13

US 9,418,450 B2

4, 3, 3, 3, 2, 2,

4/

4, 3, 3, 3,2, 2,1,

4,

3’ 2’ 2] 1’ ll

3, 3,

4’

3, 3, 2, 2,
2,

3,

2’

3,

3’

2,1, 1 0,0,0,

3, 2,
2,

1, 1, 0, 0, 0, O,

2’

i, 1, 0, 0, 0, 0, O,

[

3, 3,

4,

4, 4, 4, 4, 3, 3, 3,

4,

4’ 41 4I 3! 3[3’ 2’

7

3,3, 2, 2,

3,

4, 3, 3, 3,2,2,1,

4,

3,3,3,2,2,1, 0,

4’

3, 3,2,2,1, 0,0,
o,

3,

2,1, 1,1, 0,

2,

1l 1’ ol

2, 2,1,

2,

3,

3,2,2,2,1, 1,1,

3,

3, 2, 2,2,1,1,

3,

, 3, 3,2, 2, 2,1,
2, 2,

‘a,

3, 3, 2,

4,

4,

4, 4, 3, 3, 2, 2,
3, 2,

4,

4I 3[

4[

4,

4’

3I 4’

3,

3, 3, 4,

2,

2, ’
21

2,

4,
4

3, 4, 4,
3' 4'
3’

3!

2, 2,

2,2, 3, 3, 4, 4,
1, 2, 2, 2, 3,

1, 2,
ll

43'

1, 1, 2, 2, 2,

o,

1l 2’ 21 2’ 3!

1,

0, 0,

, 0,1, 2,2, 3, 3,
3,

0,

4I

4,

2, 2, 3,

1,

3’ 4/ 4/ 4I

3!

1, 2, 2,

2,3, 3,4, 4, 4, 4,

2,

3, 3,

4,

4, 3, 3, 3,

4,

4,

4,

3/ 21

3,

3' 3! 2’ 2’

3'

4, 3, 3, 3, 2,
3,

4,

3, 2,2,1,1,
1

3,

41

0,

3, 3,2,2,1, 1,

3,

3,2,2,1,1,0, 0,
2,

3,

1, 0, O,

11

2’

2’ 2[1I 1’ 1[ol 0I

2, 2,

3,

1, 1,1, O,

2,

3,

2, 1,

2, 2,

3,

3,

4, 4, 4, 3, 3, 2, 2,

4!
4]

47

4,

4, 4,

4,

4, 4, 4, 4, 3, 3, 3,

4,

41 4’ 41 3’ 3[3’ 2!

4,

2, 2,
2'

4! 4' 3’ 37 3[
3'

4’

4, 3, 3, 2, 1,
2,

4’

1,

2,

3l 3! 3’

4,

3,3,2,2,1,0,0,

3'

1,1, 2,2, 3,3,
3,

o,

4,

1,1, 2, 2, 3,

0,

1, 2, 2, 3, 3, 4, 4,

1,

, 2,3, 3,4, 4, 4,
2/

1,

3,

3,

2,

3, 3,

2,

3l 3l 21

3,

3,3, 2, 2,1,

3,

3, 3,2,2,1,1,
2, 2,1, 1,

3,

0,

3, 3,

3,

3,2,2,1,1,0,0,
2,

3,

i, 1, 0,0, 0,
0,

2,

.1, 1,0, 0,0,
2,

2,

1, 1, 0, 0, O,

17

2,

2,3, 1,1,1, 0,0,

2,

21 2' 2! 1! ll 1/

3,

3, 2, 2, 2,

31

OI

0,

3I 2I 2! 2! 11
2!

3,

3, 3, 2, 2,1, 0,

4!

4, 3, 3, 2, 2, 2, 1,

4,

3’ 2! 21 2'

3,

3, 3, 2, 2,
3, 2,

4,

3,

4’

4, 4, 4, 4, 4, 3, 3,

4,

, 4, 4, 4, 3,

[

4.

’

4,

1, 1, 2, 2, 3, 3,

1,

1, 2, 2, 3, 3, 4, &,

1,

2, 2, 3, 3, 4, 4, 4,

1,

2, 3, 3, 4, 4, 4, 4,

2,

3, 3, 4,

2/

3I

3, ‘

3!

3, 2,2,1,1,0, 0,
0,

3’
3l 27

o0,

1l ol

1,

2,

2, 1,1, 0, 0, O,
1

2,
1
2

, 1, 0, 0,0, 0, 0,

’

1, 1,1,0,0,0 O,
o,

’

i, 1, 1, 0, 0,

2’ 2!

2, 2,1,1,1, 0, 0,

2,

3, 2, 2, 2,

3,

3, 3,2, 2, 2,

4,

4' 3' 3’ 2’ 2’ 2[

4’

2,2,2,1,1, 0, 0,

3,

3, 2,2,2,1,1, 0,

3,

3, 3,2,2,2,1,1,

4’
4

'

4,

]

3[2[2[2!

3,

3! 2/

3[

3’ 2!

3,

3, 3,

4,

FIG. 6B

U.S. Patent Aug. 16, 2016 Sheet 10 of 13 US 9,418,450 B2

600C

R e L
- o - oo L] O 0 0 O|d o "t N NN N N[o H N NN
[S I
O A d < | = QOO O OMHAHNNGONONOWNOOMHMWN NN
O Y N
COoAdAdAMd@IP P cuddrd-d o0 OoOC|drHrdadNNNNOODOO e o™
F S S T
OCo0OO0OHMNMT P AN nnnnldd A A N[O O OO0 Y
L T Y
COoOO0OO0OMNMMOM|N N N MMM MAdAOoOYIPIITMNMMOOCO LI 9 9
[N Y e
cooNNNMMNNNNMOONMoooeowsrmnmmooomnnmew
FS e Y N Y
O O N N ONNNOMINNOWN N «|o o TN Mmoomm M m
O Y Y s
O N N NN NN N[N o~ N e w 9lo oo L) o Mmoo
P N s O
A A A A A P A A I A AHA PP N PP A
A A AT A T m @] o H T T R[N <@ Ao
FS S Y S “ . m e s
Ord A A A AN A AN MN - -
coodmmmMdiAard AN NdAd A OO Omme <A
S N TN s
co oo NMOMMdd HONNANNAHMHAHAOOMO[O O OO NN O
F T e Y e
oo o« NN M- O CONNON|M H M AMONANIMOOMNNNNO O 0
OCOooNNNWNNlo o o NN NH MO O NN N NN NNNNNO (Te)
[Y O
CONNANNNONOOOODOONNOOOONONONO NI NN =} d
[Y Y S TS —
A A D Y AT TINAAT TP T TSN T A A u
L N e B
A A AP A A YT PIPONONHAA AP STPNNN PP P A A
T e e e
- LT T T T T I T T I o T T T B IR TR T T T T o T W B I T o T I -
[N N S
COMH MMM Oddrd A NNddAdd Ao Mo me @A o
L e e e
coooNNMMIA A OCN N NNMAHMRMO NN O NN OO
QO OO NNNON|OOOONNONO N[co NN NAN|lNNNNNO oo
. Y N s
C oo NNNNAN[OO ©C o NN N(O cooNNANlNNNNN®NOO
L T e e
o o o N NN Njo O oo N&a N Co o oM ANAN|lNNNNN®NOO
e e s B e I X I I I I I N Y] N AHAAA|d AN L)
A A 9P A NN HAAA A A 0O ® L)
HH A MM O A A H MMM NNOOMMMmM|dA N I)
L L T e
A AN MmN O A A MMM coo0oo0coMMmMMMd A HOM < T
L e e e
OO0 Q0O NNNMMHOOONNNNOOOOMMEwoooN NN
[N T T
QO QNN NN IOODOONNNNOOOOWSZTIWOOONNONRO-N
LS T Y e
C O OO NNNNOOOODNNNNOOOOQODTTI|IOONNNNNNW
L T L T Y s
OO O NNNNGNIOOOODONNOGNOOOOOSWwWZ| OO NNONI NI NN

U.S. Patent Aug. 16, 2016 Sheet 11 of 13 US 9,418,450 B2

600D

crHdddddNNldddrdocoo|ldaNaNMAdAAdddlssmmmaN -

T O N

C O A N N N - 40 O N NN NN A T T MO0 M NN -

CooANANNNdAYITNNNNCOCOOMMe D t+mmema N

O S L

O 00 QCFANNWNIDFILP P INNNNOCOCODOMMNMP IA|LTOHMmMNONAT-A

CcooevwvadNlessrssrsaNNNaNNMHAdA[O®N0 N A MO

CcommeSssdlmmomesaNdNNTNNdAAA[OOOGNHA A O

CMmMmMMmes S MMM rsadNNcCCCocMMmMedmmaNHHOGCO

T M MMM I M AMNNNCOOOMMeEImmNNHHOCOC

HHddAddddojdAdAdAssssnmmmadcdad O ®oO <

A A Adddolddddss s dsrnmnNNNATNEM®O® T

M A A HAOO|AAHMeTdd s drTmmOmNNIANN®D OO

MMM A HAOCO|CHMAMTII T TI TN NN ANNOO @

T YTMMmemMcNNCONMMMIdtsesrrsooddloddaamam

T vTmAMdadldNNNMMmMY|sTooocodH|lod AN N® MM a

TesmmAaNNNdNNNNMMMoccoo oo HcoHANN®M® 7

T YT maNdliNNNNNMMocococococooHcoAHNN MM -
O

A L e —

Lol - M < T ~ oo AR H NN NNNN ¢ T FTT NN mM m

A MMt ddrdAdAdrds s AN NNNNFTITOOMON OO0

R LRI CE R E R R R R R L R N NN

Mmoo meslcornmnsssdrdaNSs T MOMMMAEN NN

CoNNMMMMO S o NMMMICOTTITT IO MMANNNN A

S cNaNNMMcoNNNMmMMAMoossmmmon|a oo Ao

SN NNNNNNocNNNNNNMOOOmMmMMmmm|NNHAAdAdAAOO

S NN NNNNANdeNNNNNAMcocomMMama|lddddOO0O0Oo

ArHAddddesloorddAdNNNlAddYSdS st ddddoooo

Adddrddvslcococddaddaddrddssswsrliadddddoco

iAdddevvlocodosaNNANldAdTS s Mmoo~ d A Ao

AHHdAdde<YvlocosssadldAadmmamann aN SN A

A AddmMmmelocrssdsrdddaddommalmmnma oo

CordAmMmmMmecMmMme s drdrdddd MO moan

CoocoNN®MMMAMMMMIdIdIIOONNNNTTOANM®O® @

CC OO NNNNMMMMMIIIOCOOONNNGGNIYFETITMOmO N

US 9,418,450 B2

Sheet 12 of 13

Aug. 16, 2016

U.S. Patent

700

. s s~ ~ . s . -~ o~ o~ - 0~ &~ . n s~ ~ ~ .~ 0~ S
A A O AH|O O O 00 H™NM|O OO M| O o - O (=]
- 0~ ox o~ .~ N ~ N~ .~ 0~ s~ . ~ s~ o~ ~ ~ ~ o~ ~
O rM - H|OOAA|OOO OO0 O H|OOAA|O (= - - [«
0 00O H[{ O OO w}J]O OO O 0 O H|O A+ «w! O — (=T | -
“- &~ o~ 0~ ~ & s~ -~ o~ 0~ - o~~~ .« o~ =~ =~ ~ N ~ = N
0O 0O 0O Ol0 OO0 OO OO C OO H|H At A |O — o o ~
~ s s s ~ s s s [N .~ 0~ s~ ~ o~ s ~ ~ .~ o~ -
Lo T T T I T I I B = o B Ot H|O O O OO0 o o o Q
-~ &~ o~ . “ .~ . . - . 0~ .- s~ s~ .~ .~~~ ~ - .~ o~ ~
- - |0 A A|O O O HAHA|O OO |0 o - o~ (=]
[N .~ . s s ~ .~ 0~ ~ o~~~ . x o~ o~ ~ -~ -~ o~ -
- A4+ | O O - A0 O ~ O ™ < ~H|O O O)} O o -~ o
- v o~ o~ ~ o~~~ - o~ 0~ .~ .~~~ .~ . o~ -~ ~ .~ o~ IS
OO 0O 00|00 onrd|O OO OM e H|OO®MHHA]O - o o Ll
.- .~ « o~ o~ s ~ o~ 0~ - o~~~ ~ s s ~ -~ .~ - S
- oA A A A A AP A A OO0 4 H|O0O O o |O o o o o
O 0 0 O] H r H | = OO0 H AHA[OH ™ |O o o o o
oo o0oo0o|loHddAd|O A+ O O 4O - | O ~ o O o
-~ v o~ .~ o~ s . ~ o~ 0~ .~ o~~~ . s s~ ~ - -« . ~
O 00O 00O |OC O~ OO H i | O - o (=4
- - - - - ~ - - ’.I - - - - - - ~ - - - - -~ ~ -
oA | O H | OO H A A0 O0O0OMrM; O ~ o O -
- - -~ O OO0 4]0 OO O rH H|O0O O w | O (o) o o
- o~ o~ . s s . -~ 0~ 0~ -~ o~ o~ 0~ “« & s s ~ ~ .« o~ -
0O 000|000 OO0 OO O ™ - H|O O A — o o
~ o~ o~ 0~ ~ = &~ ~ o~ o~ .« = o~ 0~ .~ .~~~ -~ ~ ~ o~ ~
0O 000|000 O0OO]O OO OO +H H|O H v | ™ ~ - o

702

FIG. 7

US 9,418,450 B2

Sheet 13 of 13

Aug. 16, 2016

U.S. Patent

700

,,,-,,,,,,,,
coMAd|loocooolnaa®

R N

ComMHA|{OOCOM|HArMmMoO

Y Y

ocanNANAM|HHNN|[|OOOO

S e

NNANN|[AANNjOo OOO

TR I e
OorMdMAd|ldNNOOCO|lOoOHNN|HNNGN
S e
comMMd| | NoOooc|jlorHmaNN|HH NN
O e e
conNaN|lMmdoo|loHrdaN]O AH N
R O U
ocnNANAN|[AHOO|loHNN|[OOH A
N S S I
- - HHNN|[O MM NN NN
Y R I R
o o HeHdNN|[OHA N[N NN
conVVloooo|lormdaldddaaa
”’l,”l - m mw L L e
coanaYoooo|lorHa|lo oo o
R e O
HrHAdAN|lOONN]OO M N]N N NN
R N G I
AHNN|lOON N[O M N|HAAH
coNN|[OOHH|©O M d|rdrdr
T O P
cooN|lOOrMH|OOHN|O OOO

FIG. 8

US 9,418,450 B2

1
TEXTURE COMPRESSION TECHNIQUES

BACKGROUND OF THE INVENTION

1. Field of the Invention

The invention relates generally to field of texture compres-
sion and decompression in computer graphics.

2. Background

A texture is a one-, two- or multi-dimensional array of data
items used in the calculation of the color or appearance of
fragments produced by rasterization of a computer graphics
scene. A texture could be image data (either photographic or
computer generated), color or transparency data, roughness/
smoothness data, reflectivity data, etc. Providing realistic
computer graphics typically requires many high quality,
detailed textures. Providing such textures can tax available
computer memory and bandwidth. Texture compression can
therefore significantly reduce memory and bandwidth
requirements.

Texture compression has thus become a widely accepted
feature of graphics hardware in general and 3D graphics
hardware in particular. Indeed, forms of texture compression
date back to the earliest pieces of graphics hardware. The goal
of texture compression is to reduce storage and bandwidth
costs on the graphics system while retaining as much of the
quality of the original texture as possible. Attaining this goal,
however, has proved to be complex and has generated several
different approaches, some of which are described briefly
below.

Palletization is amongst the oldest forms of texture com-
pression. Its roots date back to the earliest days of color
computer graphics. Typically, palletized formats are repre-
sented by 8 bits of data per pixel, permitting a maximum of
256 colors chosen from the complete colorspace (usually
quantized to 16 or 32 bits). Some images can be well repre-
sented by this approach, but it is not uncommon for the
palletizing process to generate significant visual artifacts.
Palletization is clearly limited when dealing with real-world
images such as photographs, where the limited set of avail-
able colors is quickly exhausted. Image space techniques
such as dithering are used for improving the quality of pal-
letized images, but are difficult to use with textures because if
the texture is magnified, the desired effect of the dithering
may be lost, and the dithering itself may introduce undesir-
able artifacts. Palletized methods have some additional
attributes that can make them less attractive for implementa-
tion in graphics hardware—for instance, they introduce an
indirection when looking up color values. Palletization might
also require storage for multiple palettes simultaneously for
multi-texturing support. Generally, the quality achieved per-
bit is quite low with palletization, and it has largely been
superseded by more advanced methods.

Vector Quantization (“VQ”), developed by PowerVR, is
another specific texture compression technique. It works by
storing a limited “codebook™ of representative entries to
define a texture. The codebook entries are blocks of pixels of
some size (typically 2x2 or larger). For each block of pixels in
the original texture, an index is stored to the codebook entry
that most closely approximates the block. VQ can achieve
very high compression rates (down to about 2 bits per pixel)
while still retaining fair quality. Nonetheless, it shares some
of the undesirable qualities of palettisation with respect to
texture compression. For instance, the type of artifacts intro-
duced by VQ compression can be quite noticeable on texture
images, and it frequently shows visible artifacts on some
common texture contents such as smooth gradients.

20

30

40

45

2

The Joint Photographic Experts Group (JPEG) algorithms
are another image compression technique. JPEG achieves a
very high quality of compression at a low bit rate, but the
compression is of a variable rate. Variable rate compression
makes addressing the texture map very difficult compared to
fixed-rate schemes. As a result, there has been no adoption of
JPEG compression in consumer 3D graphics systems except
for the limited purpose of reducing a system memory imprint.
For example, JPEG compression is used on Sony’s Playsta-
tion 2 to reduce the system memory footprint, but the system
does not texture directly from the compressed JPEG repre-
sentation.

DXTC (sometimes referred to as DXTn) is a block-based
texture compression scheme has been adopted by all major
hardware vendors and is the most widely used today. An
extension of Block Truncation Coding (BTC), it explicitly
stores two 16-bit colors per 4x4 pixel block and two other
colors that are implicitly represented as being interpolants
between these endpoints, with an index of 2 bits per pixel to
choose the colors for the pixel block. As a result it achieves
overall color compression to 4 bits per pixel. DXTC repre-
sents the original texture data quite well in the majority of
cases. However, DXTC has problems with textures having
many different color hues within each block. Additionally, the
low precision of the endpoints and small number of interpo-
lants can produce some noise on gradients, particularly ones
that are oriented diagonally to the pixel blocks. DXTC also
has problems with textures containing blocks that have mul-
tiple separate color gradients at different orientations, as
accurate compression of one gradient must typically be sac-
rificed when mapping the points to a line through the color-
space. This happens frequently in images such as normal
maps. A DXTC extension allows 4 component images (with
alpha) to be represented at 8 bits per pixel.

FXT 1 is a competing compression scheme with DXTC. It
essentially extends DXTC with some additional block types
that can be mixed within any given image, and also provides
a 4 bits per pixel compression mode for textures with alpha.
The gains in image quality over DXTC were never conclusive
and FXT 1 received limited industry support.

PVR-TC is a recently developed compression scheme that
scales an image down to a fraction of its original size and then
scales it back up to obtain a good first-approximation of the
original image. Texture compression is thus achieved by stor-
ing the downscaled version and then adding some modulation
to create a fairly accurate reconstruction of the original data.
This texture compression scheme works well for some types
of data (particularly smooth gradients), and scales reasonably
even to low bit rates. However, PVR-TC has a tendency to
blur images somewhat and lose high frequency details. Occa-
sionally the PVR-TC compression also seems to introduce
other artifacts such as high frequency modulation noise and
ringing.

A review of current texture compression techniques and
their limitations reveals a need for improvements. An ideal
solution would allow compression of various types of data
and would have the flexibility to make the best use of avail-
able memory and bandwidth. Additionally, traditional texture
compression schemes target a specific type of texture content
(e.g., JPEG for photographic images) and perform well
within that set, but perform poorly as soon as presented with
a type of image outside of the designated set. Another chal-
lenge is thus to broaden the scope of texture compression to
adequately cover a wider base of image types.

BRIEF DESCRIPTION OF THE
DRAWINGS/FIGURES

The accompanying drawings, which are incorporated
herein and form a part of the specification, illustrate the

US 9,418,450 B2

3

present invention and, together with the description, further
serve to explain the principles of the invention and to enable
a person skilled in the pertinent art to make and use the
invention.

FIG. 1 illustrates an exemplary system in which the
described embodiments may operate.

FIG. 2 illustrates the flow of texture data through an exem-
plary system.

FIG. 3 is a flow chart illustrating a compression method.

FIG. 4 illustrates various partitions.

FIG. 5 is a flow chart illustrating a decompression method.

FIGS. 6 A-6D illustrate an exemplary set of 64 partitions,
each having five disjoint subsets.

FIG. 7 illustrates an exemplary set of 32 partitions, each
having two disjoint subsets.

FIG. 8 illustrates an exemplary set of 12 partitions, each
having three disjoint subsets.

The present invention will now be described with reference
to the accompanying drawings. In the drawings, like refer-
ence numbers indicate identical or functionally similar ele-
ments. Additionally, the left-most digit(s) of a reference num-
ber identifies the drawing in which the reference number first
appears.

DETAILED DESCRIPTION OF THE INVENTION

Introduction

Textures are one-, two-, or multi-dimensional data arrays.
Textures are sometimes used to enhance or change the
appearance of surfaces in graphics. A “texel” is a texture
element in the same way a “pixel” is a picture element. The
terms “pixel” and “texel” may be used synonymously herein
and simply refer a discrete unit of data—e.g., data at an (X, y)
location in a frame buffer, texture buffer or other type of
memory or array. The compression and decompression meth-
ods described herein may be used to compress various types
of texture information including image data, picture data,
transparency (alpha) information, smoothness or roughness
data, or any other similarly structured data. As such, the term
texture is used broadly herein to refer to the data being com-
pressed or decompressed using the described methods.

Texture mapping is the process of applying a texture to a
fragment, pixel or primitive representing a surface to be dis-
played. Texture mapping is often used to add realism to a
scene. For example, one can apply a picture of a building
fagade to a polygon representing a wall. During texture map-
ping, a compressed texture element—e.g., a block of texels—
is obtained from texture memory and represents the color or
other surface characteristic of a corresponding fragment or
pixel on the surface to be displayed.

As hardware and software graphics platforms support
increasingly sophisticated texture mapping techniques, the
scenes that developers would like to render have grown much
more complex. Complex scenes thus often make greater use
of textures. One of the costs of texture mapping is that the
texture images often require a large amount of memory.
Memory for textures can be limited, especially in hardware
rendering systems where textures are placed in a dedicated
memory in the graphics subsystem. Texture compression,
which reduces the amount of data needed to store texture map
images, allows a user to fit more texture data into available
memory. The result is an ability to use more textures for
higher accuracy and increased rendering quality.

There exist both “lossy” and “lossless” texture compres-
sion schemes. A lossy texture compression scheme refers to a
compression technique where it is impossible to exactly rec-
reate the texture during decompression—i.e., the original

10

15

20

25

30

35

40

45

50

4

texture data is changed irretrievably. A lossless texture com-
pression scheme, on the other hand, refers to those techniques
that permit the exact recreation of the original texture—i.e.,
the original texture data can be identically recovered by
decompressing the texture compressed by a lossless compres-
sion technique. The present invention typically implements
lossy texture compression techniques.

Lossy texture compression techniques seek a balance
between texture compression ratio (i.e., the amount of com-
pression) and image quality. A high texture compression ratio
provides benefits with respect to memory use and speed, but
typically sacrifices image quality. On the other hand, textures
may be stored at a high level of quality, but typically at the
cost of reduced compression ratios. It will be appreciated by
those skilled in computer graphics that certain applications
may value image quality, while others may value a high
texture compression ratio (i.e., a low bit-per-pixel number).
The overall goal, therefore, is to make the most efficient use of
available resources while meeting the needs and limitations
of the application, the user, and the user’s graphics system.

As the expectations for higher levels of image quality in
computer graphics increase, the limitations of DXTC and
other lossy texture compression methods described above are
becoming more apparent. Given that the amount of available
memory and bandwidth is constantly increasing the present
invention permits increased image quality with a lower com-
pression ratio as well higher quality compression than exist-
ing methods at the same compression ratio. When going to a
higher number of bits-per-pixel, one challenge is trying to
achieve the same quality per bit as the schemes with higher
compression ratios. To address this challenge, the present
invention further refines block-based image compression
techniques such as DXTC with a flexible method for pre-
compression partitioning of texture blocks. The pre-compres-
sion partitioning enhances image quality by flexibly selecting
partitions suitable to the characteristics of the texture block
being compressed, rather than adopting the one-size-fits-all
approach suggested in other methods.

Sample Environment

Before describing embodiments of the present invention in
detail, it is helpful to describe an example environment in
which the data compression device may be implemented.
FIG. 1 illustrates a graphics system 100. The system may
include, but is not limited to, a computer 110, various input
devices 160 such as a keyboard or a mouse (not shown), and
various output devices 170 such as a liquid crystal display
(LCD) monitor or a cathode ray tube (CRT) monitor (not
shown). The computer 110 may include, but is not limited to
a central processing unit (CPU) 120, a graphics processing
unit (GPU) 140, a main memory 130, and a graphics memory
150. As will be understood by those having ordinary skill in
the art, the components may be combined in various ways.
For example, the CPU and the GPU may be combined into a
single device. Similarly, exemplary embodiments of the
invention may combine main memory and graphics memory
into a single memory. Other combinations are similarly pos-
sible.

The computer 110 may be a portable computer, a laptop
computer, a desktop computer, server, mainframe, handheld
device (e.g., mobile phone, camera, portable media player),
digital television or the like. The main memory 130 may be
random access memory (RAM) or some other storage device.
For static data, the main memory may also contain read only
memory (ROM). Main memory 130 may be used for storing
information during execution of instructions by the CPU 120
such as processor instructions, temporary variables, or
cached information. Graphics memory 150 may also consist

US 9,418,450 B2

5

of RAM, ROM or other storage and is primarily used for
storing graphics information such as scene information and
texture data. Also illustrated is an external memory or storage
device 135, such as a hard disk or other storage device, that
can be used to store texture data. It should be noted that
textures may be stored in uncompressed or compressed for-
mat. Pre-compressed data would pass through the CPU
unmodified.

The graphics system 100 may also include an external
communication device 180 such as a modem, a wired or
wireless network interface card, or other well-known inter-
face devices. External communication device 180 allows a
communication link to a local area network (LAN), wide area
network (WAN), the Internet or any other well-known type of
external network. All the elements of the graphics system 100
are typically coupled to a communications bus 190 through
which information and instructions are routed.

The GPU 140 contains the graphics hardware, which typi-
cally includes a rendering pipeline for transforming scene and
texture data into information ready for display. Some graph-
ics hardware systems may include a separate pipeline that is
dedicated to texture information. The GPU 140 also typically
has its own local storage that holds the information to be
output to a visual display device.

FIG. 2 further illustrates the path texture data may take
through an exemplary graphics system. An uncompressed
texture source 210 (e.g., texture database or library) is
coupled to CPU 120. Within CPU 120 is a texture compres-
sion engine 220. The texture compression engine 220 is pri-
marily responsible for implementing the texture compression
methods of the present invention using hardware, software or
a combination of both.

A compressed texture may then be stored in graphics
memory 150 or external memory 135, which are coupled to
CPU 120. Texture data for use by the GPU 140 is stored in the
graphics memory 150. In some implementations this may be
a dedicated region of memory—i.e., texture memory 250.
The graphics memory 150 and CPU 120 are both coupled to
GPU 140. Within GPU 140 is a texture decompression engine
240. Texture decompression engine 240 is primarily respon-
sible for decompression or decoding compressed texture data
such that it can be used by GPU 140. The GPU may use this
texture data to produce data used by the output device 170 or
in further processing.

Compression Principles

As noted above, the present invention represents a further
refinement of block-based texture compression schemes such
as DXTC. Like DXTC, the basic compression algorithm
implemented in a preferred embodiment divides or splits the
image up into discrete blocks of pixels (e.g., 4x4 pixel or 8x8
pixel blocks) and compresses them.

However, rather than mechanistically compressing the
regular texture blocks, the present invention introduces the
idea of further subdividing or partitioning the block internally
into “subsets” of different shape and size before compression.
Each subset is then compressed in a manner similar to DXTC.
Precompression subdivision addresses several image quality
problems with existing DXTC compression, and results in a
significant overall increase in perceived and measured qual-
ity. Furthermore, it provides improvement in the ability to
compress less common types of texture data (such as non-
photorealistic textures, cartoons, etc.).

FIGS. 3A-C are flowcharts more specifically illustrating
one embodiment of the present invention. Initially, an original
texture to be compressed is received in a texture compression
engine. As with other block-based texture compression
schemes, the original texture is then split or divided into

10

15

20

25

30

35

40

45

50

55

60

65

6

original blocks of pixels according to step 305. Typically, the
original block of pixels is a square or rectangular block—e.g.,
4x4 or 8x8 pixel. The size of the original block of pixels is
variable, and may be selected according to user needs, appli-
cation demands and/or system capabilities.

As indicated in 310, each original block of pixels is then
subjected to steps 315 through 325. According to step 315 a
partition is identified that describes the manner in which the
original block of pixels is to be further split. Each of the
partitions define a plurality of disjoint subsets of pixels whose
union is the original block of pixels. A partition can consist of
a single subset, in this case the subset is identical to the single
block of pixels. FIG. 4 illustrates some basic examples of the
types of partitions and the subsets they contain. The size and
arrangement of the subsets within a partition is completely
variable—i.e., there is no restriction considering the number
or configuration of the subsets except for the number of bits
dedicated to defining them. For example, a partition may have
8 or 16 subsets as in partitions 402 and 404, respectively.
Alternatively, a partition may have 3 or 6 subsets as in parti-
tions 408 and 406, respectively.

Typically, the partition is selected from a pre-defined set of
partitions. The number of available partitions in the pre-de-
fined set may vary, but is limited by the number of bits in the
data structure dedicated to relaying that information. For
example, if there are 6 “partitionBits” dedicated to describing
the partition, then the pre-defined partition set could contain
up to 64 different partitions. Some embodiments could have
several sets of partitions, the partitions in each set divide the
block into the same number of subsets, with the set of parti-
tions to be used (and hence the number of subsets for the
block) being identified by a selector. For example, if the
selector has two bits, and there are 6 partition bits, then there
could be one set of 64 two-subset partitions, another set of 64
three-subset partitions, a third set of 64 four-subset partitions,
and a fourth set of 64 five-subset partitions. The specific data
structure for this embodiment is described in more detail
below.

An exemplary set of 64 partitions, each having 5 subsets, is
illustrated in FIGS. 6A-6D. For clarity, the complete set of
partitions is illustrated over 4 pages of figures, with 16 such
partitions illustrated by partition 600A in FIG. 6A. An exem-
plary partition 602 is shown in FIG. 6 A. Therein, an 8x8 pixel
block has been subdivided into 5 disjoint subsets with a first
subset containing those pixels labeled 0, a second subset
containing those pixels labeled 1, a third subset containing
those pixels labeled 2, a fourth subset containing those pixels
labeled 3, and a fifth subset containing those pixels labeled 4.

Similarly, FIG. 7 illustrates 32 partitions, each having two
disjoint subsets. An exemplary partition 702 is illustrated in
FIG. 7. Therein, a 4x4 pixel block 702 has been subdivided
into two disjoint subsets with a first subset containing those
pixels labeled 0 and a second subset containing those pixels
labeled 1. FIG. 8 illustrates a set of 16 partitions, each of
which has been subdivided into three disjoint subsets. An
exemplary partition 802 is illustrated in FIG. 8. Therein, a 4x4
pixel block 802 has been subdivided into 3 disjoint subsets
with a first subset containing those pixels labeled 0, a second
subset containing those pixels labeled 1, and a third subset
containing those pixels labeled 2.

The partition set could be of arbitrary size up to the com-
binatorial limit of the number of ways to partition a block. In
embodiments designed for efficient encoding a more limited
set of partitions will be defined in order to fit within the
desired code size. An embodiment could allow a unique par-
tition set for each texture, or it could require all textures to
share the same fixed partition set. It is possible to evaluate a

US 9,418,450 B2

7

quality function for each original block of pixels to aid in
selecting an appropriate partition. Once a partition has been
identified, the original block of pixels is subdivided into one
or more subsets according to the identified partition, as illus-
trated in step 320.

Next, according to step 325, each subset is then indepen-
dently compressed to form a compressed texture block. In an
embodiment, each of the subsets may be compressed using
two explicit endpoint parameters that define a line in the
colour space, and a plurality of implicit points on the line
selected according to a predefined quantization. However, the
described methods are not limited to this particular compres-
sion scheme. For example, palletization or other vector quan-
tization compression algorithms could be implemented as
well.

After the subsets of pixels have been compressed, the com-
pressed texture block may be evaluated to further refine par-
tition selection. Two such evaluation embodiments are illus-
trated in FIGS. 3B and 3C. Evaluation typically requires (i)
decompression of the compressed texture block to obtain an
approximation of the original block of pixels, and (ii) com-
parison of the original block of pixels and the approximation
of the original block of pixels to obtain a quality parameter.
These steps are reflected in steps 330 and 332 of FIG. 3B, and
steps 340 and 342 of FIG. 3C.

The quality parameter is derived from a predefined func-
tion used to quantify a certain aspect of the decompressed
texture block as it compares to the original block of pixels.
For instance, the predefined function could evaluate the pixel
colors in the original block of pixels as compared to the pixel
colors in the approximation of the original block of pixels to
derive an overall error approximation. An error approxima-
tion may be a root-mean-square (RMS) error composed of,
for example, the squared sum of individual pixel color error
contributions over all the pixels in the block. Alternatively,
other functions may be devised, depending on the users
needs. For example, the function could evaluate luminance,
or transparency, or any other texture parameter deemed
important by a user. As detailed below, the quality parameter
is used to measure the relative success of the compression for
the selected partition against other partitions, or against a
pre-selected quality parameter threshold.

In the embodiment of FIG. 3B, a decision is made in step
334 as to whether the quality parameter for the identified
partition meets a pre-selected threshold. If it does, then the
identified partition becomes the final partition for the current
block of pixels according to step 336. If the quality parameter
does not meet the pre-selected threshold, then a determination
is made according to step 335 as to whether partitions remain
for which no quality parameter has been obtained. If such an
untested partition remains, then the method returns to step
315. In this embodiment, a user can select a minimum stan-
dard of quality for the texture block compression based on a
variety of parameters. In this embodiment, the quality param-
eter values are also tracked so that, if the threshold quality
value is not achieved, then the partition yielding the best
quality value can be chosen, as illustrated in step 337.

Next, in step 338, the original block of pixels is subdivided
into one or more final subsets according to the final partition.
The subsets from this final subdivision are then indepen-
dently compressed to form a compressed texture block, as
illustrated in step 339.

In an alternative embodiment, represented by FIG. 3C, the
partition is identified from a predefined set of partitions.
Then, a quality parameter is obtained for each partition in the
set of partitions. According to step 344 of FIG. 3C, ifa quality
parameter has not been obtained for each partition in the

10

15

20

25

30

35

40

45

55

60

65

8

predefined set of partitions, the method returns to step 315,
where another partition is selected. In this embodiment, the
system then selects the partition yielding an optimal quality
parameter, as described in step 346. Next, in step 348, the
original block of pixels is subdivided into one or more final
subsets according to the final partition. The subsets from this
final subdivision are then independently compressed to form
a compressed texture block, as illustrated in step 349.

One of skill in the art could devise various other means for
identifying and selecting an appropriate partition. Such
embodiments could be tailored for the specific needs of the
programmer, and depend on the particular implementation
for which data compression is desired.

Decompression Principles

Decompression of texture blocks that have been com-
pressed according to the present methods involves essentially
working backwards. FIG. 5 is a flowchart illustrating such a
decompression scheme. According to step 505, a compressed
texture block is received that represents an original texture
block.

The next decompression step 510 involves determining the
partition that was used for the compressed texture, the parti-
tion defining one or more disjoint subsets into which the
compressed texture block is to be unpacked. As noted above
in the compression discussion, the partition defines the man-
ner in which the uncompressed texture blocks were further
subdivided into disjoint subsets prior to compression. Thus,
the size and shape of the subsets must be determined before
decompressing the subsets.

According to step 515, the data for each subset is then
unpacked based on the determined partition. “Unpacking”
refers to extracting the information from the block that is
required to decompress the data stored in the subset. Finally,
according to step 520, the subsets are independently decom-
pressed to generate an approximation of the original texture
block. Typically, the approximation would then be used by
the GPU’s texture mapping algorithm and applied to a ren-
dered surface for display, but in some cases it could instead be
used in further stages of processing.

Exemplary Embodiments

Described below are several exemplary embodiments of
the above described compression methods. They include
exemplary data structures and pseudo code for accomplishing
the compression principles described above. The invention is
not limited to these embodiments, but only by the scope of the
appended claims. The skilled artisan could envision and
implement variations on these embodiments without depart-
ing from the spirit and scope of the invention.

A first embodiment is a direct, higher quality replacement
for DXTC compression. It compresses 24-bit RGB data to 4
bits per pixel. Punch-through alpha encoding from DXTC is
also supported, where one of the indices in the data structure
supports a fully transparent “black-pixel” for so-called
“punch-through” textures. As illustrated below, the texture is
divided into blocks of 8x8 pixels for compression. Each com-
pressed block has a notional format described below. How-
ever, the exact details of the packing and storage will be
implementation dependent, and could be reordered to make
the hardware decompression as simple as possible. In this first
embodiment, a texture block is subdivided into two, three,
four or five subsets. The particular data structures are
described more fully below.

US 9,418,450 B2

9

Partition data structure with two subsets:

typedef union

{

struct

{

unsigned int blockType : 2;
unsigned int colour0:14, colourl:14, colour2:14, colour3:14;
unsigned int partitionBits : 6;
unsigned int t00:3,t01:3, t02:3, t03:3, t04:3;
unsigned int t05:3, t06:3, t07:3, t08:3, t09:3;
unsigned int t0a:3, t0b:3, t0c:3, t0d:3, t0e:3;
unsigned int tOf:3, t10:3,t11:3,12:3,13:3;
unsigned int t14:3,115:3,t16:3,t17:3, t18:3;
unsigned int t19:3, tla:3, t1b:3, tlc:3, t1d:3;
unsigned int tle:3, t1f:3, t20:3, t21:3, t22:3;
unsigned int t23:3, t24:3, t25:3, 126:3, t27:3;
unsigned int t28:3,129:3, t2a:3, t2b:3, t2¢:3;
unsigned int t2d:3, t2e:3, t2:3, t30:3, t31:3;
unsigned int t32:3,t33:3, t34:3, t35:3, t36:3;
unsigned int t37:3, t38:3, t39:3, t3a:3, t3b:3;
unsigned int t3c:3, t3d:3, t3e:3, t31:3;

} twoPartitionMode;

Partition data structure with three subsets:

struct

unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int

blockType : 2;

colour0:20, colourl:20, colour2:20;

colour3:20, colour4:20, colour5:20;

partitionBits : 6;

t00:2, t01:2,102:2, t03:2, t04:2;

t05:2, t06:2,107:2, t08:2, t09:2;

t0a:2, tOb:2, t0c:2, t0d:2, t0e:2;

t0f:2, t10:2,t11:2, t12:2, t13:2;

t14:2, t15:2,t16:2,t17:2,t18:2,t19:2;
tla:2,t1b:2, tle:2, t1d:2, tle:2, t1f:2;

t20:2, t21:2,122:2, 123:2, 124:2, 125:2, 126:2,127:2;
128:2,129:2, t2a:2, t2b:2, t2¢:2, 12d:2, t2e:2, t21:2;
t30:2, t31:2,t32:2, t33:2, t34:2, t35:2, t36:2, t37:2;
t38:2,139:2, t3a:2, t3b:2, t3¢:2, t3d:2, t3e:2, t31:2;

} threePartitionMode;

Partition data structure with four subsets:

struct

unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int

blockType : 2;

colour0:15, colourl:15, colour2:15, colour3:15;
colour4:15, colour5:15, colour6:15, colour7:15;
partitionBits : 6;

t00:2, t01:2, t02:2, t03:2, t04:2, t05:2, 106:2, t07:2;
t08:2, t09:2, t0a:2, t0b:2, t0c:2, t0d:2, t0e:2, tOf:2;
t10:2, t11:2,t12:2, t13:2, t14:2, t15:2, t16:2,t17:2;
t18:2,119:2, tla:2, t1b:2, tle:2, t1d:2, tle:2, t1£:2;
t20:2, t21:2,122:2, t23:2, t24:2, t25:2, 126:2,t27:2;
128:2,129:2, t2a:2, t2b:2, t2¢:2, 12d:2, t2e:2, t21:2;
t30:2, t31:2, t32:2, t33:2, t34:2, t35:2, 136:2, t37:2;
t38:2,139:2, t3a:2, t3b:2, t3¢:2, t3d:2, t3e:2, t31:2;

} fourPartitionMode;

Partition data structure with five subsets:

struct

{

unsigned int blockType : 2;

unsigned int colour0:12, colourl:12, colour2:12, colour3:12;
unsigned int colour4:12, colour5:12, colour6:12, colour7:12;
unsigned int colour8:12, colour9:12;

unsigned int partitionBits : 6;

unsigned int t00:2, t01:2, t02:2, t03:2, t04:2, t05:2, t06:2, t07:2;

unsigned int t08:2, t09:2, t0a:2, tOb:2, t0c:2, t0d:2, t0e:2, tOf:2;

10

15

20

25

30

35

40

45

50

55

60

65

10

-continued

unsigned int t10:2, t11:2,t12:2, t13:2, t14:2, t15:2, t16:2,t17:2;

unsigned int t18:2, t19:2, tla:2, t1b:2, tlc:2, t1d:2, tle:2, t1f:2;

unsigned int t20:2, t21:2,t22:2, t23:2, t24:2, t25:2, 126:2,127:2;

unsigned int t28:2, t29:2, t2a:2, t2b:2, t2¢:2, t2d:2, t2e:2, t2£:2;

unsigned int t30:2, t31:2,t32:2, t33:2, t34:2, t35:2, t36:2, t37:2;

unsigned int t38:2, t39:2, t3a:2, t3b:2, t3¢:2, t3d:2, t3e:2, t3£:2;
} fivePartitionMode;

}

With respect to the above described exemplary data struc-
tures, the <blockType> field has 2 fixed bits that indicate how
many subsets are in the partition. The next field indicates the
color endpoints for the subsets. In each case there are 2 colors
stored explicitly per subset, so a partition having 2 subsets
stores 4 colors, and a partition having five subsets stores 10
colors. Each data structure has 6 “partitionBits” that are used
to choose a partition from a pre-defined set of 64 possible
partition modes. Each <blockType> has its own set of 64
possible pre-defined partitions.

In practical terms, in order to simplify the decompression
and make it cheaper, this first embodiment uses only one base
set of 64 explicitly pre-defined partitions, defined for the
5-subset case, as illustrated in FIGS. 6 A-D. One can then, for
example, create tables for the partitions with fewer subsets by
merging regions within this table—i.e., performing unions on
the subsets within a partition. For example 4 subsets could be
derived by merging subsets 4+3 together, while 3 subsets
could be derived by merging subsets 4+3 together, and 0+1
together. Other combinations are, of course, possible. By
deriving the partitions for all modes from the above table we
can reduce the storage requirements for the tables in hard-
ware.

Preferably, the colors for the partition subsets are recon-
structed as follows: Each subset uses two of the explicitly
defined colors that are directly mapped to the subset. In this
embodiment the explicit colors are promoted from their base
representation up to 8 bits-per-component by shifting and
replication of the high bits to the low bits. That is, 8 bits each
for Red, Green and Blue (“RGB 8.8.8”) in what is referred to
as “RGB” color space.

Colors are then generated for the subset by using the two
explicit colors as the endpoints of a line in RGB color space.
The remaining (implicit) colors are evenly distributed along
that line. For higher quality in this embodiment it is desirable
for the implicit colors to be derived at higher precision than
the endpoints—ie. more than 8 bits-per-component. Each
pixel or texel in the subset has an index that looks up which
color to use from the line. Each subset can use one of two
different distributions of the implicit colors relative to the
endpoints along the line. We will, in future, refer to these
different distributions as colour ramps—the ramp consists of
the endpoints and the distributed colours. Which ramp to use
is decided by treating the endpoints as unsigned numbers and
performing the following simple comparison:
IF(colourO<colourl) use ramp O ELSE use ramp 1. Finally,
exact color derivations are defined in the sections on each data
structure below.

For example, in the partition with two subsets, four colors
are stored at 14 bits of precision (RGB 5.5.4). Each texel or
pixel index is 3 bits, so the ramps have 8 positions. The ramp
derivation is as follows:

unsigned BYTE c[8][4];
if{colour0 > colourl)

US 9,418,450 B2

11
-continued
{
¢[0] = colour0;
¢[7] = colourl;
// Set alpha to 1.0
¢[0][0] = Oxft;
¢[7][0] = Oxft;
for(i=0;i<4;i++)
{
c[1][i] = (6*c[O][i] + 1*¢[7][i] +3)/ 7;
c[2][i] = (5*¢[O][i] + 2*¢[7][i] + 3) / 7;
c[3][i] = (@*c[O][i] + 3*¢[7][i] +3)/ 7;
c[4][i] = 3*c[O][i] + 4*c[7][i] +3)/ 7;
c[5][i] = (2*c[O][i] + 5*¢[71[i] +3) / 7;
c[6][i] = (1*c[O][i] + 6*c[7][i] +3)/ 7;
¥
¥
else
{
¢[0] = colour0;
¢[7] = colourl;
// Set alpha to 1.0
¢[0][0] = Oxft;
¢[7][0] = Oxft;
for(i=0;i<4;i++)
c[1][i] = (5*¢[O][i] + 1*¢[7][i] + 2) / 6;
c[2][i] = (@*c[O][i] + 2*¢[7][i] + 2) / 6;
c[3][i] = 3*c[O][i] + 3*¢[7][i] + 2) / 6;
c[4][i] = (2*c[O][i] + 4*¢c[7][i] + 2) / 6;
c[5][i] = (1*¢[O][i] + 5*¢[7][i] + 2) / 6;

// Colour 6 is treated as transparent
c[6] = transparent; c[6][0] = 0;

}

In the above example, each pixel in a subset is represented
by a 3-bit index into the color set.

In the partition with three subsets, alternatively, six colors
may be stored at 20 bits of precision (RGB 7.7.6). Each texel
index is 2 bits, so the ramps have 4 positions. The ramp
derivation is as follows:

unsigned BYTE c[4][4];
if{(colour0 > colourl)
{
¢[0] = colour0;
c[4] = colourl;
// Set alpha to 1.0
¢[0][0] = Oxft;
c[4][0] = Oxft;
for(i=0;i<4;i++)

¢[0] = colour0;
c[4] = colourl;
// Set alpha to 1.0
¢[0][0] = Oxft;
c[4][0] = Oxft;
for(i=0;i<4;i++)
{
c[1][i] = (c[O][i] + c[4][i] + 1) / 2;

// Colour 3 is treated as transparent
¢[3] = transparent; c[3][0] = 0;

In the above example, each pixel in the subset is repre-
sented by a 2-bit index into the color set.

In the partition with four subsets, eight colors are stored at
15 bits of precision (RGB 5.5.5). Each pixel is represented by

10

15

20

25

30

35

40

45

50

55

60

65

12

a2 bit index into the color set. The color derivation is the same
as forthe 3 partition mode. Similarly, in the partition with five
subsets, ten colors are stored at 12 bits of precision (RGB
4.4 .4) and the texel representations work as in the four subset
mode.

It should be noted that the optimal set of partitions for the
format will be determined by the user and the nature of the
application. One skilled in the art will recognize that it is
impossible for one set of partitions to be totally optimal across
all images.

Image Quality Versus DXT1

The above described first embodiment was tested against
S3 Graphics’ DXT1 (sometimes also called DXTn or DXTC)
using the 64 partition set described in FIG. 6. The tests
revealed that this embodiment gives a higher quality com-
pression than DXT1 on all images tested, both in terms of
measured RMS error and perceived image quality. Taking the
Root Mean Square (RMS) error as the basic quality param-
eter, the gains achieved range from a typical low-bar of
10-15% reduction of total RMS error to a high range of 50%
reduction or more.

The low-range RMS improvements are typically found on
more photo-realistic textures, but even in cases where there is
a relatively small improvement in overall RMS, the above
described embodiment can give significantly better perceived
quality as it improves on some of DXT1s most noticeable
quality problems, noticeably its tendencies towards introduc-
ing low-frequency noise (or ‘blocking’) and bleeding colors
from one region to another. The largest improvements in
RMS tend to occur on non-photorealistic textures such as
cartoons, or items like “heads-up displays,” where the above
described embodiment usually gives a very significant
improvement in visual quality.

The variable partition scheme described above is superior
in terms of RMS error. Additionally, it also provides notice-
able improvement in perceived quality and eliminates some
image artifacts almost completely. The table below illustrates
some test results for various types of images.

Weighted RMS Error
R =0.3086; G =0.6094;

B =0.082

Image Name Image Description DXT1 4 bpp partition
4.2.03 Photographic; noisy 597 2.86
17 Computer display 7.28 5.6
Dialog 1 Cartoon 5.55 3.28
Lena Photographic portrait 3.74 2.82
Ring Attificial, concentric 12.71 6.29

gradients with varying

frequency
Smart Photographic, complex 7.8 5.57

color regions

Image Quality Versus Other Compression Methods

In testing, the above described embodiment consistently
produces higher quality images than the other compression
methods discussed in the introduction to this document, such
as palletization and vector quantization. Comparing schemes
at the same compression rate has shown the above embodi-
ment to be of higher quality in terms of RMS error and
subjective quality than other fixed-rate compression formats.
It also adapts very well to a wide variety of input image types,
and largely doesn’t depend on one particular type of input
data (e.g., photographic) to produce high quality compres-
sion—some of other compression methods discussed per-

US 9,418,450 B2

13

form reasonably well on a subset of images, but break down
when given a wider range of data.

Alternative Embodiments

A second embodiment is intended as a direct replacement
for DXTS5. Its data structure is similar to the first embodiment
described above and DXT1. It uses the same color encoding
as the first embodiment, but each 8x8 color block is accom-
panied by an 8x8 alpha block with the following format:

struct

{
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int

alpha0:8;

alphal:8;

alpha2:8;

alpha3:8;

alpha4:8;

alpha5:8;

alpha6:8;

alpha7:8;

t00:3, t01:3, t02:3, t03:3, t04:3, t05:3, t06:3, t07:3;

t08:3, t09:3, t0a:3, tOb:3, t0c:3, t0d:3, t0e:3, tOf:3;

t10:3, t11:3, t12:3, t13:3, t14:3, t15:3, t16:3, t17:3;

t18:3,119:3, tla:3, t1b:3, tle:3, t1d:3, tle:3, t1£:3;

t20:3, t21:3, t22:3, t23:3, t24:3, t25:3, 126:3, 127:3;

128:3, 129:3, t2a:3, t2b:3, t2¢:3, t2d:3, t2e:3, t21:3;
unsigned int t30:3,t31:3, t32:3, t33:3, t34:3, t35:3, t36:3, t37:3;
unsigned int t38:3,t39:3, t3a:3, t3b:3, t3¢:3, t3d:3, t3e:3, t3£:3;

} APC2_ALPHA_ BLOCK;

The alpha block is subdivided into subsets as with the color
block, but there are no explicit partitioning bits used in the
format. Instead, the endpoints are ordered for each subset in
the partition to derive the 4 bits chosen from a table of 16
possible partitions.

For alpha encoding, a lower number of subsets per parti-
tions are acceptable because the quality gains from additional
subsets rapidly reaches diminishing returns due to the gener-
ally high quality of the basic compression scheme. Avoiding
explicit partition bits allows the precision of the endpoints to
be kept as high as in DXTS. The 6-interpolant encoding with
explicit 0 and 1 is no longer used, but this loss is generally
more than offset by the addition of pre-compression partition-
ing. Alpha derivation should typically have at least 12 bits of
fractional precision retained. Although the old DXTS only
required 8-bits of precision for the derivation, it is more
flexible to allow the format to use the full potential precision
of the interpolated values.

For the color block, decoding in the above described for-
mats typically means that transparent punch-through alpha
encoding is no longer required. However, the ability to
decode to either 3 or 4 colors for each subset in the partition
could make a quality difference. As detailed below, there are
a number of possible extensions to this second embodiment
format.

One example is an alpha extension. As noted above, the
number of partitions for the color block for the first embodi-
ment was limited to only 64 possibilities, leaving only two
“spare” bits. In the format of this second embodiment, one
additional possibility is to make use of these two bits to decide
on a per-block basis which channel is represented in the alpha
block. Given the two bits we have four possibilities—

Colour block contains RGB, Alpha block contains A
Colour Block contains AGB, Alpha block contains R
Colour block contains RAB, Alpha block contains G
Colour block contains RGA, Alpha block contains B

W= O

10

15

20

25

30

40

45

55

60

65

14

After decoding the channels would be swizzled back into
the normal order. By selecting different swizzles for each
block, significant improvements in compression quality are
possible.

Third through sixth embodiments differ from the above
described first embodiment in that they compress a different
number of components—i.e., instead of compressing three
color components in RGB space, they compress a single
component or other texture variable. A third embodiment, for
example, is a 1-component compressed format for single
channel data. It uses the same compression as the alpha block
in the second embodiment and allows compression of original
data with around 12-bits of precision to 4-bits.

A fourth embodiment is a 2-component compressed for-
mat. It is the substantially similar to ATI2N/3DC compression
(developed by ATI Technologies), and uses the same block
format for each component as the above described third
embodiment.

A fifth embodiment is a 4-component compressed format
using the same block format for each component as the third
embodiment.

A sixth embodiment format is designed for developers who
require higher quality compression than that provided by the
above described first embodiment. It compresses to 8-bits per
pixel (compared to the first embodiment at 4-bits per pixel),
but the compressed texture quality is much higher, and the
format can handle images with 3 or 4 channels. Textures
compressed with this sixth embodiment are generally nearly
indistinguishable from the uncompressed source texture. The
principles of the sixth embodiment are very similar to the first
embodiment, but works by compressing 4x4 pixel blocks.

In the sixth embodiment, each block contains either two or
three subsets per partition.

typedef union
{

struct

{
unsigned int blockType : 1;
unsigned int colour0:19;
unsigned int t0:3;
unsigned int t1:3;
unsigned int t2:3;
unsigned int t3:3;
unsigned int partitionBit0:1;
unsigned int colourl:19;
unsigned int t4:3;
unsigned int t5:3;
unsigned int t6:3;
unsigned int t7:3;
unsigned int partitionBit1:1;
unsigned int colour2:19;
unsigned int t&:3;
unsigned int t9:3;
unsigned int tA:3;
unsigned int tB:3;
unsigned int partitionBit2:1;
unsigned int colour3:19;
unsigned int tC:3;
unsigned int tD:3;
unsigned int tE:3;
unsigned int tF:3;

} twoPartitionMode;

struct

{
unsigned int blockType : 1;
unsigned int colour0:13;
unsigned int t0:3;
unsigned int t1:3;
unsigned int t2:3;
unsigned int t3:3;
unsigned int t4:3;

US 9,418,450 B2

15

-continued

unsigned int t5:3;
unsigned int colourl:13;
unsigned int colour2:13;
unsigned int t6:3;
unsigned int t7:3;
unsigned int colour3:13;
unsigned int colour4:13;
unsigned int t8:3;
unsigned int t9:3;
unsigned int colour5:13;
unsigned int tA:3;
unsigned int tB:3;
unsigned int tC:3;
unsigned int tD:3;
unsigned int tE:3;
unsigned int tF:3;
unsigned int partitionBit:1;
} threePartitionMode;
DWORD rawData[4];
} OPC8_BLOCK;

The <blockType> specifies if the data structure contains
two or three subsets per partition. There is no transparency
encoding, and the color ramps always have 8 points. As illus-
trated, the sixth embodiment has a number of different parti-
tions.

For a two subset partition, the data structure contains four
endpoints, specified at 19 bits (RGB 6.7.6) precision. The
index size is three bits and there are 32 possible partitions,
selected in some fashion similar to the following:

partition = (block->colour0 > block->colourl) ? 0x1 : 0;
partition |= (block->colour2 > block->colour3) ? 0x2 : 0;
partition |= (block->partitionBit0) ? 0x4 : 0;

partition |= (block->partitionBitl) ? 0x8 : 0;

partition |= (block->partitionBit2) ? 0x10 : 0;

For a three subset partition, the data structure contains six
endpoints, specified at 13 bits (RGB 4.5.4) precision. The
index size is three bits. There are 16 possible block partitions,
selected in some fashion similar to the following:

partition = (block->partitionBit) ? 0x1 : 0;

partition = (block->colour0 > block->colourl) ? 0x2 : 0;
partition |= (block->colour2 > block->colour3) ? 0x4: 0;
partition |= (block->colour4 > block->colour5) ? 0x8 : 0;

An implementation of the sixth embodiment has been
tested and shown to give quality levels that on most 3-channel
(RGB) textures can be considered ‘perceptually lossless.” In
other words, if the compressed and uncompressed represen-
tations are compared side-by-side, it can be difficult for an
observer to determine which is which, even when magnified
and subjected to close scrutiny. Preservation of detail and
coloris extremely good, and noticeable artifacts are very rare.
The compression quality is high on both real-world and arti-
ficial images, when comparing the sixth embodiment to
DXT1, RMS error on the 3-channel textures is typically
reduced by at least 50%, and more commonly by 70% or
more. While normal map—i.e., a map of surface normals—
compression can also potentially be achieved with this for-
mat, the quality is not as high as other alternatives (3DC/
BC3).

CONCLUSION

While various embodiments of the present invention have
been described above, it should be understood that they have

10

15

20

25

30

35

40

45

50

55

60

65

16

been presented by way of example only, and not limitation.
Note that numerous features described above can be imple-
mented in data compression schemes outside the field of
texture compression. It will be apparent to persons skilled in
the relevant art that various changes in form and detail can be
made therein without departing from the spirit and scope of
the invention. Thus, the breadth and scope of the present
invention should not be limited by any of the above-described
exemplary embodiments, but should be defined only in accor-
dance with the following claims and their equivalents.

What is claimed is:

1. A texture compression method, comprising:

(a) splitting an original texture having a plurality of pixels
into original blocks of pixels;

for each of the original blocks of pixels:

(b) identifying a partition from a predefined set of parti-
tions, the partitions having one or more disjoint and
variably shaped subsets of pixels whose union is the
original block of pixels;

(c) subdividing the original block of pixels into one or more
subsets according to the identified partition;

(d) independently compressing each subset to form a com-
pressed texture block; and

(e) decompressing the compressed texture block to obtain
an approximation of the original block of pixels;

() comparing the original block of pixels to the approxi-
mation of the original block of pixels to obtain a quality
parameter for the identified partition;

(g) repeating steps (b) through (f) for each partition in the
predefined set of partitions to obtain the quality param-
eter for each partition;

(h) choosing a final partition for the original block of pixels
that yields an optimal quality parameter;

(1) subdividing the original block of pixels into one or more
final subsets according to the final partition; and

(j) independently compressing each final subset to form a
compressed texture block.

2. The method of claim 1, further comprising:

for each original block of pixels,

evaluating a function for the original block of pixels; iden-
tifying a partition based on the evaluated function; and
repeating (c) and (d).

3. The method of claim 1, wherein the final partition is
selected for the original block of pixels if the quality param-
eter for the identified partition meets a pre-selected threshold
and the final partition is selected that either meets the pre-
selected threshold or is closest to the pre-selected threshold
when none of the partitions meet the pre-selected threshold.

4. The method of claim 1, wherein (b) further comprises
identifying the partition from a predefined set of partitions
wherein the subsets have a different number of pixels.

5. The method of claim 1, wherein the predefined set of
partitions includes an explicitly defined base set of partitions
and additional sets of partitions derived from the base set.

6. The method of claim 5, wherein each derived partition is
obtained from a partition ofthe base set by performing unions
of some of its subsets.

7. The method of claim 1, wherein (d) further comprises
compressing the pixels in each subset using a lossy compres-
sion method.

8. The method of claim 1, wherein (d) comprises compress-
ing each of the subsets using two explicit endpoint parameters
and a number of intermediate points defining a ramp in the
color space.

9. The method of claim 1, wherein (d) comprises compress-
ing each of the subsets using a palletization technique.

US 9,418,450 B2

17

10. The method of claim 1, wherein the quality parameter

is based on a root-mean-square error for the block.

11. The method of claim 1, wherein the quality parameter

is based on chrominance error parameter for the block.

12. The method of claim 1, wherein the quality parameter

is based on a luminance parameter for the block.

13. The method of claim 1, further comprising splitting the

texture into regular blocks of 8x8 pixels.

14. The method of claim 1, further comprising splitting the

texture into regular blocks of 4x4 pixels.

15. A computer processing system for texture compres-

sion, comprising:

a processor configured to (a) split an original texture hav-
ing a plurality of pixels into original blocks of pixels,
wherein for each of the original blocks of pixels, the
processor is further configured to:

(b) identify a partition from a predefined set of parti-
tions, the partitions having one or more disjoint and
variably shaped subsets of pixels whose union is the
original block of pixels;

10

15

18

(c) subdivide the original block of pixels into one or
more subsets according to the identified partition; and

(d) independently compress each subset to form a com-
pressed texture block; and

(e) decompress the compressed texture block to obtain
an approximation of the original block of pixels;

(f) compare the original block of pixels to the approxi-
mation of the original block of pixels to obtain a
quality parameter for the identified partition;

(g) repeat steps (b) through (f) for each partition in the
predefined set of partitions to obtain the quality
parameter for each partition;

(h) choose a final partition for the original block of pixels
that yields an optimal quality parameter;

(1) subdivide the original block of pixels into one or more
final subsets according to the final partition; and

(j) independently compress each final subset to form a
compressed texture block.

#* #* #* #* #*

